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Abstract. There are several studies in the literature regarding the equation of state of alumina-epoxy 
composites. Although this single component system interacts in a complex manner with shock waves, 
the addition of a second metal or ceramic particulate can result in even more complex interactions. 
This paper presents a review of shock loading studies on epoxy-based particulate composites. The 
relationship between equation of state parameters and particulate concentration is investigated. The 
measured shock properties are compared with a mixture model for two and three phases. 
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of particle velocity and much faster than the initial 
shock wave [1,2]. 

In epoxy [8-10], Carter and Marsh [8] 
observed a failure of the shock velocity to 
extrapolate to the ultrasonic bulk sound speed, 
which they attributed to the distance between the 
chains being compressed but not the polymer 
backbones. Additionally, a high pressure phase 
transition, at ~23 GPa, which was attributed to 
interchain chemical reactions, has been observed 
[8]. 

This paper presents a review of shock loading 
studies on epoxy-based particulate composites. 
The relationship between equation of state 
parameters and particulate concentration is 
investigated. The measured shock properties are 
compared with a mixture model for two and three 
phases. 

INTRODUCTION 

There are several studies in the literature 
regarding the equation of state of AlaOs-epoxy [1-
5] composites. Although these single component 
systems interact in a complex manner with shock 
waves, the addition of a second metal or ceramic 
particulate, such as in Al-FcaOs-epoxy [6,7] or 
Al-Mn02-epoxy, can result in even more complex 
interactions. The propagated wave in AlaOs-epoxy 
has been observed to be broadened [1] at low input 
stress due to the time available for viscous 
mechanisms. As the input stress increases, the 
material exhibits viscoelastic behavior [3]. 
Additionally, the release wave is a strong function 
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MIXTURE MODEL 

Modeling the behavior of composites using the 
properties of the constituents offers the possibility 
of greatly reducing the number of experiments 
needed to validate the Hugoniot. Baer, et al. [11-
13] have developed a simple model for composite 
materials based on the properties of the 
constituents. For the two phase material, the 
details have been published elsewhere [11,12]; 
however, a brief description is included here for 
completeness. The volume fractions {(pi) of the 
individual constituents must sum to 1, i.e. the 
mixture occupies all space: 

i : " = i 0 . = 1 , . (1) 

The density of the mixture is defined as 

0 lPl + 02P2 = Pmix , (2) 

where p, is the density of the constituent and p^t^ 
is the density of the mixture. Equation 2 can be 
used to determine both the initial density and the 
density at pressure. From the jump conditions and 
characteristics theory [13], the shock velocity. Us, 
is 

U. (3) 

where c^ is the sound speed and Up is the particle 
velocity. The two-component mixture sound 
speed, in the limit of homogeneous flow [14], is 

'^s.mix {Vs,mix~''^p) '•PlCi P2C2-' 

Finally, the change in density across the shock 
front is 

'"mix _ 1 _ ~y 

Pmix ^s,mix 
(5) 

where the density is defined by Equation 2 for the 
initial state (superscript 0) and the final state. 
Assuming that the particle velocity is the same in 
all phases, i.e. the constituents are in local 
mechanical equilibrium [12], the shock velocity in 
the mixture, along with the volume fractions at 
pressure, are determined by simultaneously solving 
Equations 1, 4, and 5. 

For a three, or more, phase mixture, the same 
relationships are used, but are applied to create 
"1+2" and "1+3" constituents, which are then 
combined. For these "1+j" constituents, the 
normalized volume fraction is 

(6) 

and the density is 

Pi; = <^jPi + (1 - <^j)Pj (7) 

Equations 4 and 5 can then be rewritten for the 
"1+j" components and solved simultaneously. 
Since, again, the mixture occupies all space 
(Equation 1), the volume fractions are 

0fc 
ak<t> 

(1-afc) 

Following from Equation 8, 

01 

\fork = 2,N 

( i+2Lz i^ ttfc/ 

and 

^J 
( i -«;)( i+2^ 

N gfe \ 
21-ai,) 

(8) 

(9a) 

(9b) 

The shock velocity of the fmal mixture is then 
determined from Equation 5, where the density is 
the density of the total mixture. 

The properties of the constituents used in the 
mixture model are presented in Table 1. All of the 
constituents were studied under shock loading, 
with the exception of MnOa, which has been 
investigated under static high pressure. Using the 
P-V relationship from this work [16] and the 
Rankine-Hugoniot jump equations, a Us-Up 
relationship for this material was approximated. 

TABLE 1. Density, bulk sound speed (Co), and S for the 
component materials used in the Baer mixture model 
calculations. 

Material 

Al [15] 
AI2O3 [15] 
Fe^O, [15] 
MnOj [16] 
Epoxy [8] 

Density 
(g/cm^) 

2.712 
3.969 
5.00 
5.026 
1.185 

Co 
(km/s) 

5.332 
8.14 
6.24 
8.0 
2.69 

S 

1.3751 
1.28 
1.39 
1.9 
1.51 
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^E 2. Epoxy-based composite formulations where the shaded rows have nominally 

Material 

Al-MnOj' 
All 

A12 
A13 
AM 

fully loaded 
300/100/20 

Fl 
F2 

Al-Fe203 

A15 
A16 

200/100/20 
half loaded 
Al-FejOs 
100/100/20 

A17 

Volume Fraction 
Epoxy 

0.45 
0.52 

0.57 
0.57 
0.57 
0.57 
0.58 
0.58 
0.58 
0.60 

0.62 
0.66 
0.66 
0.75 
0.78 
0.80 
0.8 

AI2O3 

0.48 

0.43 
0.43 
0.43 
0.43 
0.42 
0.42 
0.42 

0.38 
0.34 
0.34 
0.25 

0.20 
0.2 

Al 
0.24 

0.16 

0.09 

FeiOs 

0.24 

0.13 

Mn02 
0.31 

Density 
(g/cm^) 
2.598 
2.496 

2.377 
2.389 
2.391 
2.28 
2.37 

2.376 
2.429 
2.366 

2.233 
2.377 
2.13 
1.87 

2.047 
1.76 

2.121 

c, 
the same epoxy content. 

c. Co 
(km/s) 

3.36 
3.31 

3.20 
3.13 
3.03 
3.16 
3.40 
3.13 
3.26 
2.94 

3.03 
2.99 
3.09 
2.78 
2.62 
2.82 
2.74 

1.81 
1.82 

1.72 
1.70 
1.59 
1.68 
1.57 

1.34 

1.59 
1.56 
1.43 
1.4 

1.31 
1.23 
1.34 

2.99 

2.88 

2.93 
2.93 
2.79 
2.76 
2.02 

2.87 
2.63 
3.08 
2.66 

S 

2.01 

1.99 

1.63 
1.94 
2.26 
2.26 
3.48 

1.18 
1.66 
1.22 
1.60 

Ref 

5 

5 
5 
5 
4 
1 
3 
3 
6 

5 
5 
1 
4 
6 
1 
5 

Linear fit only vaHd Up = 0.3-1.3 

DISCUSSION 

All of the experimental results presented in 
this paper have been published in the literature, 
with the exception of Al-MnOa-epoxy, which will 
be published at a later date. The materials 
referenced in this section are presented in Table 1. 

The Hugoniots for two AlaOs-epoxy 
composites are presented in Figure 1. AI2O3 - 57 
vol.% epoxy is the most extensively studied 
formulation [1,3-6], and this curve is a compilation 
of the data from these references. The mixture 
model for the two formulations (57 and 80 vol.% 
epoxy) is also presented. It can be seen that 
decreasing the amount of epoxy increases the 
shock velocity for equivalent particle velocity. The 
mixture model describes the behavior of the 
composites within approximately 10%o. 

A similar graph. Figure 2, has been prepared 
for the multi-constituent epoxy-based composites. 
The mixture model has been solved for these 
composites and, again, describes the behavior of 
the composites to within approximately 10%o. 

In order to make the dependence on epoxy 
volume fraction, the pressure, at Up = 0.370 km/s, 
for AlaOs-epoxy, Al-FcaOs-epoxy, and Al-MnOa-
epoxy, was extracted to create Figure 3. If there 
was not an experimental point at this exact Up, it 

2.5 

o AI203 - 57 vol.% epoxy 
• AI203 - 80 vol.% epoxy 

AI203 - 57 vol.% epoxy 
- - AI2O3-80 vol.% epoxy 

0.2 0.4 0.6 0.8 1 
U (km/s) 

FIGURE 1. Shock velocity versus particle velocity for 
Al203-epoxy particulate composites, where symbols are 
experimental data and lines are the mixture model. 

was interpolated from the next nearest points. The 
two-phase Baer model was used to calculate the 
solid line of expected pressures for AlaOs-epoxy. 
The mixture model (heavy black line) tends to 
tmder predict the pressure at this Up. In order to 
determine the origin of this under prediction, an 
analysis of the experimental uncertainty was 
conducted. For both constituents, the tmcertainty 
for the experimentally measured Us versus that 
calculated using a linear fit to Us-Up data was 
determined. At Up = 0.370 km/s, the tmcertainty in 
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o AI-Fe203-78vol.% epoxy-
• AI-Fe2O3-60vol.% epoxy 
+ AI-Mn02-45 vol. % epoxy 

AI-Fe203-78 vol.% epoxy 
—•AI-Fe2O3-60 vol.% epoxy|-

AI-Mn02-45 vol.% epoxy 

0.5 1 

U (km/s) 

1.5 

FIGURE 2. Shock versus particle velocity for multi-
constituent particulate composites, where symbols are 
experimental data and lines are the mixture model. 

o AI203 
• Al-Fe203 
A Al-Mn02 

Baer Model 

CL 

CD 

0.4 0.5 0.6 0.7 

Volume Fraction Epoxy 

0.8 

FIGURE 3. Pressure {Up = 0.370 km/s) versus volume 
fraction epoxy, where the symbols are experimental data 
and the lines are the mixture model. 

the epoxy is 0.03 and 0.08 in the alumina. An 
uncertainty analysis for the mixture model [16] 
yields the "error" bars shown as the light black 
lines in Figure 3. For higher epoxy volume 
fractions, the experimental points start to fall 
within the error bars. The uncertainty in the linear 
fit is not the only error in the experimentally 
measured properties of the constituents, which 
could further expand these bounds. Further 
refinement of the constituent properties, e.g. 
density, should improve the fit of the model in 
Figures 1 and 2. 

C O N C L U S I O N S 

A mixture equation of state for AlaOs-epoxy 
composites and epoxy-aluminum-(iron, 
manganese) oxide has been generated and 
compared to experimental data. The mixture 
model predicts the behavior to within ~10%. 
However, variation in the properties of the 
constituents, in particular density, has not been 
accounted for. 
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